China Best Sales Mxl XL L Htd 3m 5m 8m Aluminum Alloy Timing Synchronous Automotive Rubber Poly V Transmission Belt Pulley pulley alternator

Product Description

INDUSTRIAL TIMING PULLEY 

. Feature

Our Timing Belt uses Japan-imported high quality synthetic neoprene, high quality glass fiber cord and tooth surface with nylon 66 high stretch do the protection. The timing belt adapts teeth or teeth mesh to transfer power. It needs no lubrication, no slip, no pollution, less noise. The transmission efficiency is over 98%, and the speed ratio can reach 1:10. Linear velocity can be up to 50m/s. Its dynamic bending wind gives a good fatigue performance, and good aging heat-resistance abrasion performance.

. Parameters

Figure 1. Physicomechanical Property

Item  Trapezoid Teeth Arc Teeth
XL L H XH XXH 3M 5M 8M 14M 20M
Tensile Strength N/mm 80 120 270 380 450 90 160 300 400 520
Elongation Reference at Loading   N 60 90 220 300 360 70 130 240 320 410
Adhesion strength of cloth N/mm 5 6.5 8 10 12 6 10 12 15
Adhesion strength of core N/mm 200 300 600 800 1500 400 700 1200 1600
Gear shearing intensity N/mm 50 60 70 75 90 50 60 80 100
Elongation ≤ % 4%
Hardness Shore A 75 ± 5

Figure 2: Belt Teeth Size

Type Pitch (pb) mm Tooth height (ht) mm Belt thick (hs) mm Angle
MXL 2.032 0.51 1.14 40º
XXL 3.175 0.76 1.52 40º
XL 5.080 1.27 2.3 40º
L 9.525 1.91 3.6 40º
H 12.7 2.29 4.3 40º
XH 22.225 6.35 11.2 40º
XXH 31.7 9.53 15.7 40º
T2.5 2.5 0.7 1.3 40º
T5 5.0 1.2 2.2 40º
T10 10 2.5 4.5 40º
T20 20 5.0 8.0 40º
AT5 5.0 1.2 2.7 40º
AT10 10 2.5 5.0 40º
AT20 20 5.0 8.0 40º

 
. Production Equipment
01, pulley CNC processing zone                            02, synchronous belt making machine                  03, synchronous round roll teeth processing zone
04, synchornous belt curing processing zone        05, 3 roll calender                                            06, direct drive belt forming machine
07, pulley workshop timing mould

. Quality Testing
 

FAQ

Q1.  Can I have a sample order?
        Yes, any sample order is welcome to know the quality of our products.

Q2.  What about the lead time of the sample or the final order?
        2-5 days for normal sample.
        20-30 days for a formal order.

Q3. How much is the minimum quantity for each item in 1 order?
       One mould quantity is ok. Usually around 100pcs for small item, several dozens for big item. 

Q4. Is it possible to print our logo or brand on the belt?
       Yes, we can print your logo or design on the belt after receipt of your formal authorization        letter of the logo or your brand.

Q5. Do you offer the guarantee for your product?
       Yes, usually we offer 1 year warranty for all of our products.

 

 

Standard or Nonstandard: Standard
Application: Electric Cars, Motorcycle, Car
Feature: Wear-Resistant, High Temperature-Resistance
Tensile Strength: Strong
Material: Rubber
Type: Toothed Belt
Samples:
US$ 0.1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

htd pulley

Can HTD pulleys withstand harsh environmental conditions?

HTD pulleys are designed to be durable and withstand a wide range of operating conditions. However, their ability to withstand harsh environmental conditions depends on various factors, including the materials used, the specific design and construction of the pulleys, and the severity and duration of the environmental conditions. Here’s a detailed explanation of the factors that affect the ability of HTD pulleys to withstand harsh environmental conditions:

1. Material Selection:

The choice of materials for HTD pulleys plays a crucial role in their ability to withstand harsh environmental conditions. Different materials have varying levels of resistance to factors such as temperature extremes, moisture, chemicals, and UV radiation. Common materials used for HTD pulleys include aluminum, steel, and various types of plastics. Each material has its own strengths and limitations in terms of environmental resistance. For example, aluminum and steel pulleys are generally more resistant to high temperatures and mechanical stress, while certain plastics offer better resistance to corrosion and chemical exposure. Pulleys made from materials with suitable properties for the specific environmental conditions they will be exposed to are more likely to withstand harsh conditions effectively.

2. Sealing and Protection:

In some cases, HTD pulleys may be equipped with additional sealing or protective measures to enhance their resistance to harsh environmental conditions. Seals or covers can be added to the pulley assemblies to protect the internal components from dust, moisture, or contaminants. These protective measures help prevent the ingress of foreign particles or fluids that could potentially affect the performance or lifespan of the pulleys. Pulleys with effective sealing and protection mechanisms are better equipped to withstand harsh environments.

3. Temperature Extremes:

HTD pulleys are generally capable of operating within a wide temperature range. However, extreme temperatures, whether high or low, can pose challenges to their performance and longevity. High temperatures can cause thermal expansion, which may affect the dimensional stability of the pulleys and result in misalignment or increased wear. Low temperatures can lead to material brittleness and reduced flexibility, potentially impacting the pulleys’ ability to transmit power effectively. Pulleys designed for specific temperature ranges or those made from materials with superior temperature resistance properties are better suited for harsh temperature environments.

4. Moisture and Humidity:

Moisture and humidity can have a detrimental effect on the performance and lifespan of HTD pulleys, particularly if they are not adequately protected. Excessive moisture can lead to corrosion or rusting of metal pulleys and can degrade the performance of certain plastic materials. It can also cause lubricants to break down or wash away, resulting in increased friction and wear. Proper sealing, the use of corrosion-resistant materials, and regular maintenance to remove moisture buildup are essential for ensuring the pulleys’ ability to withstand humid or wet environments.

5. Chemical Exposure:

In environments where HTD pulleys are exposed to chemicals, their resistance to chemical corrosion becomes crucial. Certain chemicals can degrade the material properties of pulleys, leading to reduced strength, dimensional changes, or surface deterioration. The resistance of HTD pulleys to specific chemicals depends on the materials they are made from. It is important to select pulley materials that are compatible with the chemicals present in the environment to ensure long-term performance and reliability.

6. UV Radiation:

If HTD pulleys are exposed to direct sunlight or other sources of UV radiation, their resistance to UV degradation becomes important. Prolonged exposure to UV radiation can cause certain materials, such as plastics, to become brittle, fade in color, or experience surface degradation. Pulleys made from UV-resistant materials or those protected with coatings or additives that enhance UV resistance are better equipped to withstand outdoor or UV-exposed environments.

7. Application-Specific Considerations:

Finally, the specific application and operating conditions of HTD pulleys should be taken into account when assessing their ability to withstand harsh environmental conditions. Factors such as vibration, shock, dust, or abrasive particles present in the environment can affect the pulleys’ performance and lifespan. Understanding the unique requirements of the application and selecting pulleys that are designed or modified to meet those requirements can significantly enhance their ability to withstand harsh conditions.

In summary, the ability of HTD pulleys to withstand harsh environmental conditions depends on factors such as material selection, sealing and protection measures, temperature resistance, resistance to moisture and humidity, resistance to chemicals and UV radiation, and application-specific considerations. By considering these factors and selecting pulleys that are appropriately designed and constructed for the specific environmental conditions, their performance and longevity can be optimized even in challenging operating environments.

htd pulley

How are HTD pulleys utilized in robotics and automation applications?

HTD pulleys play a significant role in robotics and automation applications. They are utilized in various ways to enable precise motion control, power transmission, and synchronization within these systems. Here’s a detailed explanation of how HTD pulleys are utilized in robotics and automation:

1. Robot Arm Actuation:

In robotics, HTD pulleys are commonly used for actuating robot arms. They are integrated into the joint mechanisms of the robot arm to transmit rotational motion from the motor to the arm segments. HTD pulleys are mounted on the motor shaft and connected to the joint shafts using HTD belts. This arrangement allows for accurate and synchronized movement of the robot arm, enabling precise positioning and control for various tasks in automation applications.

2. Conveyor Systems:

Conveyor systems are widely used in automation applications for material handling and assembly processes. HTD pulleys are utilized in these systems as drive pulleys to provide the driving force for the conveyor belts. The pulleys are mounted on the drive shaft and engage with the teeth on the HTD belts, causing the belts to move. HTD pulleys ensure efficient power transmission, synchronization, and accurate tracking of the conveyor belts, enabling the smooth and reliable transportation of materials or products in automated production lines.

3. Linear Motion Systems:

HTD pulleys are employed in linear motion systems within robotics and automation. They are used in conjunction with HTD belts and linear guides to convert rotary motion into linear motion. The pulleys are mounted on the motor shaft, and the HTD belt is routed around the pulley and connected to a carriage or load. As the pulley rotates, it drives the belt, causing the carriage to move along the linear guide. This enables precise and controlled linear motion in applications such as pick-and-place operations, CNC machines, and 3D printers.

4. Robotic Grippers and End Effectors:

HTD pulleys are integrated into robotic grippers and end effectors for efficient and precise gripping and manipulation tasks. In such applications, pulleys are often used in combination with cables or belts to transmit motion to the gripper fingers or end effector components. By incorporating HTD pulleys, the gripping or manipulation actions can be synchronized and accurately controlled, allowing robots to handle objects with precision and reliability in automation applications.

5. Robotic Positioning and Path Planning:

HTD pulleys are utilized in robotic positioning and path planning systems. By integrating pulleys into the robot’s joints or drive mechanisms, precise motion control and synchronization can be achieved. This enables robots to follow predefined paths accurately, perform complex trajectories, and achieve precise positioning and orientation. HTD pulleys contribute to the overall accuracy and repeatability of robotic movements, ensuring reliable performance in automation applications.

6. Collaborative Robots (Cobots):

In the realm of collaborative robots (cobots), HTD pulleys are commonly used to facilitate safe and precise human-robot interaction. Cobots are designed to work alongside humans, and HTD pulleys contribute to their safe operation. By incorporating pulleys into the cobot’s joint mechanisms, power transmission can be achieved with reduced backlash and improved control. This allows for smooth and precise movements, enhancing the safety and collaboration between humans and robots in various automation scenarios.

In summary, HTD pulleys find extensive utilization in robotics and automation applications. They enable precise motion control, power transmission, and synchronization in robot arm actuation, conveyor systems, linear motion systems, robotic grippers and end effectors, robotic positioning and path planning, and collaborative robot applications. By incorporating HTD pulleys into these systems, robots and automated machinery can perform tasks with accuracy, efficiency, and reliability, contributing to increased productivity and improved automation processes.

htd pulley

What types of belts are typically employed with HTD pulleys?

HTD pulleys, which stand for “High Torque Drive” pulleys, are commonly used in conjunction with specific types of belts that are designed to match their tooth profile. Here’s a detailed explanation of the types of belts typically employed with HTD pulleys:

1. HTD Belts:

HTD belts are the primary type of belt employed with HTD pulleys. HTD stands for “High Torque Drive,” which refers to the specific tooth profile of these belts. HTD belts have a trapezoidal tooth shape that matches the corresponding tooth profile of HTD pulleys. The teeth on HTD belts are designed to engage precisely with the teeth on the pulleys, ensuring efficient power transmission and accurate timing.

HTD belts are constructed using a durable and flexible material, typically neoprene or a similar synthetic rubber compound, with a fiberglass or steel reinforcement. The reinforcement enhances the strength and load-carrying capacity of the belt. HTD belts are available in various sizes and configurations to accommodate different power transmission requirements.

2. Double-Sided HTD Belts:

In certain applications where power needs to be transferred from both sides of the pulley, double-sided HTD belts are employed. These belts have teeth on both sides, allowing them to engage with the teeth on the pulley from either direction. Double-sided HTD belts provide symmetrical power transmission and are commonly used in applications such as bidirectional conveyor systems and dual-drive setups.

3. Custom Belts:

In addition to standard HTD belts, custom belts can also be employed with HTD pulleys based on specific application requirements. Custom belts may include variations in materials, reinforcements, or special features to meet unique operating conditions or performance demands. These custom belts are typically designed and manufactured by belt suppliers or specialized manufacturers based on the specific needs of the application.

It’s important to note that HTD pulleys are not compatible with other belt profiles such as GT (Gates Tooth) or timing belts with different tooth profiles. The tooth profiles of HTD pulleys and belts are specifically designed to ensure optimal engagement and power transmission efficiency.

In summary, the most common type of belt employed with HTD pulleys is the HTD belt, which has a trapezoidal tooth profile that matches the tooth profile of the pulleys. Double-sided HTD belts are used in applications requiring bidirectional power transmission. Custom belts can also be employed to meet specific application requirements. It’s essential to use the appropriate belt type that matches the tooth profile of the HTD pulleys for efficient power transmission and reliable operation.

China Best Sales Mxl XL L Htd 3m 5m 8m Aluminum Alloy Timing Synchronous Automotive Rubber Poly V Transmission Belt Pulley   pulley alternatorChina Best Sales Mxl XL L Htd 3m 5m 8m Aluminum Alloy Timing Synchronous Automotive Rubber Poly V Transmission Belt Pulley   pulley alternator
editor by CX